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NON-PARAMETRIC ESTIMATION  

 

 To avoid presenting topics that will be discussed in Survival Models and Life Contingencies (2nd 

semester) and Actuarial Topics (3rd semester),  we will only cover parts of chapters 11 (13) and 12 (14) 

of Loss Models book: 

o From chapter 11 (13) we will cover section 2 until example 11.1 (13.1) and section 3 (when 

solving exercise 11.1 skip, “Nelson-Aalen estimate) 

o From chapter 12 (14) we will cover section 2 until example 12.8 (14.11) and section 3. In section 

2 only the first 2 exercises are covered.  
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Introduction  

 The main purpose is to estimate, using a non-parametric framework, the distribution function of a 
risk or its survival function, ( ) ( ) 1 ( )S x P X x F x    . The risk can be linked to human life (duration 
for instance) or to non-life insurance (claim amounts for instance). 

 Which information is available? In Loss Models the first chapter uses complete information while the 
second uses modified data. In both chapters, 4 datasets are repeatedly used: 

1. Data set A – Number of accidents by one driver in one year (data presented in Dropkin, 1959).  
2. Data set B – Amounts paid on workers compensation medical benefits: Random sample (artificial 

data) of 20 payments (full amount of the loss). 
3. Data set C – Random sample of payments from 227 claims from a general liability insurance. Data 

classified by payment range.  
4. Data set D – Time at which a five-year term insurance policy terminates (artificial data). For some 

policyholders, termination is by death, for some others it is by surrender (cancellation of the 
insurance contract) and for the remainder it is at the expiration of the five-years period.  Two 
versions of this data set are presented. The first one (data set D1) with full information (time of 
death and time of surrender when applicable) and in the second one (data set D2) only the first 
event is recorded. 
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Data sets A and B will be presented in Example 11.1 (13.1). 
 

Data Set C 

Payment range Number 
Linf Lsup payment 

0 7500 99 
7500 17500 42 

17500 32500 29 
32500 67500 28 
67500 125000 17 

125000 300000 9 
300000 Infinity 3 

 
 
   
   

Total number  
of observations                     227 

Data set D1 

Policyholder Time of death Time of surrender 
1  0.1 
2 4.8 0.5 
3  0.8 
4 0.8 3.9 
5 3.1 1.8 
6  1.8 
7  2.1 
8  2.5 
9  2.8 

10 2.9 4.6 
11 2.9 4.6 
12  3.9 
13 4.0  
14  4.0 
15  4.1 
16 4.8  
17  4.8 
18  4.8 

19 -30    

Data set D2 

Policyholder First observed Last Observed Event 
1 0 0.1 s 
2 0 0.5 s 
3 0 0.8 s 
4 0 0.8 d 
5 0 1.8 s 
6 0 1.8 s 
…    

15 0 4.1 s 
16 0 4.8 d 
17 0 4.8 s 
18 0 4.8 s 

19 -30 0 5.0 e 
31 0.3 5.0 e 
32 0.7 5.0 e 
33 1 4.1 d 
34 1.8 3.1 d 
35 2.1 3.9 s 
36 2.9 5.0 e 
37 2.9 4.8 s 
38 3.2 4.0 d 
39 3.4 5.0 e 
40 3.9 5.0 e 
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 When observations are collected the “ideal” situation is to have the exact value for each observation 

(“complete individual data” as in data set B and data set D1). However, complete individual data are not 

always available: one reason is grouping (data set C or data set A for drivers with 5 of more claims); 

other reasons are censoring and/or truncation. 

 Censoring and truncation are problems that will be analyzed in more detail when discussing frequentist 

estimation (next chapter).  

 As we can notice, the information given by data sets C to D is incomplete.  
o Data set C – grouped data  
o Data set D1 – censoring: For some observations, we only know that the time of death is greater 

than a given value (the time of surrender) 
o Data set D2 – censoring and truncation: Some observations are first observed at time 0 and others 

at time 0c   
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 Definition 12.1 (14.1) – An observation is truncated from below (also called left truncated) at d if when it 
is below d it is not recorded, but when it is above d it is recorded at its observed value.  

An observation is truncated from above (also called right truncated) at u if when it is above u it is not 
recorded, but when it is below u it is recorded at its observed value.  

An observation is censored from below (also called left censored) at d if when it is below d it is  recorded 
as being equal to d, but when it is above d it is recorded at its observed value.  

An observation is censored from above (also called right censored)at u if when it is above u it is recorded 
as being equal to u, but when it is below u it is recorded at its observed value.  

 Comments: 

Truncation - In insurance, truncation from below can happen when there is a deductible:  

 Ordinary deductible: claims are paid on excess of the deductible. 
 Franchise deductible: claims greater than the deductible are paid by total claim amount. 

In both cases a policyholder will not report a claim whose value is below the deductible. However, the 
knowledge of “small” claims (number and amounts) can be important for a correct evaluation of the 
policy risk.  
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 Censoring – Let y  be the “correct” value, c the censoring point and x  the available data. 

 Censoring from below  








cyy

cyc
x  

 Censoring from above  








cyc

cyy
x  

 In insurance censoring from above is quite usual. If a policy pays no more than 10000 €  
for a claim and if the insurance company only records the payments made, any time a loss 
is above 10000 € the amount of the claim will be unknown but we will know that a 
payment of 10000 € has happened. 

 The censoring points could be known (defined by the insurance policy) or “random”. 
Random censoring occurs for instance when a policyholder decides to surrender his policy 
(data set D1). In any case we will know the censoring points that can differ from 
observation to observation. 

o From a statistical point of view, truncation is a more severe limitation than censoring. 
o When nothing else is said, truncation will mean left truncation and censoring right censoring. 
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The empirical distribution for complete individual data 

 Let us define the indicator function of a set A by 
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AxIxI A 1

0
)()(   

 Now, let us assume that a sample of size n,  nxxx ,,, 21  , from a given population has been observed 

 Definition 11.5 (13.5) – The empirical distribution function (also known as empirical cumulative 
distribution function or ecdf) is   

n

xxI

n

x
xF

n

i i
n

 





 1
)(obs ofnumber 

)(  

 Comments: 

1. Whatever the type (discrete, continuous, mixed) of the random variable in the “theoretical” 
model, the empirical distribution function behaves as a distribution function of a discrete 
random variable. We will return to this topic later, when discussing KERNEL estimation. 

2. If our focus is the survival function, we can define ( ) 1 ( )n nS x F x  ;  
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 Example: Define the empirical cumulative distribution function when the following random sample 
has been observed (1.1; 1.1; 2.8; 1.5; 2.4; 1.5; 3.1; 3.1) 

 

  

Open circle points Closed circle points 
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 Klugman et al (Loss Models) introduce the concept of empirical probability function as  
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 Example: using the previous example we get  

𝑥 1.1 1.5 2.4 2.8 3.1 

𝑓 (𝑥) 2/8 2/8 1/8 1/8 2/8 

 If we are sampling from a continuous random variable, the probability that we observe a tie is 0 
(exceptions arise due to the rounding of the observed values) and consequently  in many situations 

nxfn /1)(  ; 

 The empirical distribution function is a much more important concept in statistical inference than the 
empirical probability function.  

 Example 11.1 (13.1) – Provide the empirical distribution functions for the data in data sets A and B. 
For data set A also provide the empirical probability function. For data set A assume that all seven 
drivers who had five or more accidents had exactly five accidents. 
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Data Set A 
 
Number of 
Accidents 

Number of 
drivers 

0 81714 
1 11306 
2 1618 
3 250 
4 40 

5 or more 7 
 
 
 
Total number  
of observations                       94935 
 
 
Number of accidents per year per policy 
1956-1958 – Dropkin paper 
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Data Set B - Amounts paid on 
Workers Compensation medical 
benefits – artificial data 
 

27 82 115 126 155 
161 243 294 340 384 
457 680 855 877 974 

1193 1340 1884 2558 15743 
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Data set B - Empirical distribution function using R 

> # read data – Data set B 
> x=c(27,82,115,126,155,161,243,294,340,384,457,680,855,877,974, 
1193,1340,1884,2558,15743) 
> F20=ecdf(x) 
> summary(F20) # Gives the mean and the 5 numbers summary 
                 To be used only if all values in x are unique!!! 
Empirical CDF:    20 unique values with summary 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
   27.0   159.5   420.5  1424.0  1029.0 15740.0  
> quantile(F20,c(0.25,0.5,0.75)) 
    25%     50%     75%  
 159.50  420.50 1028.75  
>  plot(F20) 
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Data Set A - Empirical distribution function using R 
> # read data 
>x=c(rep(0,81714),rep(1,11306),rep(2,1618),rep(3,250),rep(4,40), 
rep(5,7)) 
> length(x) 
[1] 94935 
> F94935=ecdf(x) 
>  summary(F94935) # Be very careful with the results!!!! 

F94935 is treated as an array with 6 
observations equally distributed 

Empirical CDF:    6 unique values with summary 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
   0.00    1.25    2.50    2.50    3.75    5.00  
# To get the empirical quartiles (all equal to 0 in this example) do 
> quantile(x,c(0.25,0.5,0.75)) 
25% 50% 75%  
  0   0   0 
>plot(F94935) 
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> # Empirical probability function 
> z=rep(1,length(x)); zz=tapply(z,x,sum) 
> zz 
    0     1     2     3     4     5  
81714 11306  1618   250    40     7  
> # function tapply: apply the function (sum in our case) to each 
group of element of z. The groups are defined using the factor x 
> values=as.numeric(names(zz)) 
> values 
[1] 0 1 2 3 4 5 
> EmpProb=as.numeric(zz)/sum(as.numeric(zz)) 
> EmpProb 
[1] 8.607363e-01 1.190920e-01 1.704324e-02 2.633381e-03 4.213409e-04 
[6] 7.373466e-05 
> F=cumsum(EmpProb) 
> F 
 [1] 0.8607363 0.9798283 0.9968715 0.9995049 0.9999263 1.0000000 
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Empirical distribution for grouped data 

 What are grouped data? Grouped data and censoring. 
 For grouped data it is not possible to construct the empirical distribution function. The main idea is to 

approximate it using an intuitive approach: 
o  Wherever it is possible (at the groups boundaries) obtain the value of the empirical distribution. 
o Connect those points using a linear interpolation (other interpolation methods are possible). 

When using the linear interpolation, we are assuming a uniform behavior inside each group. 

 Let the group boundaries be kccc  10 , i.e. group j is limited by 1jc  and jc (often 00 c  and 

kc   ) and let us denote by jn  the number of observations in group j.  Obviously 
1

k

jj
n n


 . 

 It is straightforward to see that  


j

i ijn nncF
1

)/1()( , kj ,,2,1   and that 0)( 0 cFn . Then 

𝐹 (𝑥) = 𝐹 𝑐 + 𝐹 𝑐 − 𝐹 𝑐   for 𝑐 < 𝑥 < 𝑐 .                                    

 Treatment of the group boundaries: No rule is given. If the underlying variable is continuous, as it is 
generally the case, there is no real problem. For other situations, the best solution is to use group 
boundaries such that we can guarantee that the observed values are not equal to group boundaries. 
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 Definition 11.8 (13.8) – For grouped data, the distribution function obtained by connecting the values of 
the empirical distribution function at the group boundaries with straight lines is called the ogive. The 
formula is  
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 Comments: 
o As this function is differentiable at all points except group boundaries, the (empirical) density 

function can be obtained. To specify the density function at the boundaries it is arbitrarily made 
right continuous. 

o We can re-write the empirical distribution function as  
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 Definition 11.9 (13.9) – For grouped data, the empirical density function can be obtained by 
differentiating the ogive. The resulting function is called a histogram. The formula is  
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 Histograms and computer programs – be careful when classes do not have equal length 

 Example 11.5 (13.5) – Construct the ogive and histogram for data set C. Data set C is a random 
sample of payments from 227 claims from a general liability insurance. Data is classified by payment 
range. 

Payments 0-7500 7500-
17500 

17500- 
32500 

32500- 
67500 

67500- 
12500 

125000- 
300000 

>300000 

Nº policies 99 42 29 28 17 9 3 
 

Use R and actuar library  to define the empirical distribution function and the histogram 

Challenging questions: 

 Can you do it without using actuar library? 
 Are you able to write a function like ogive? 
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Using library actuar 
 

> # reading 1000000 is arbitrarily chosen to replace Inf 
> x=c(0,7500,17500,32500,67500,125000,300000,1000000) # breaks 
> y=c(99,42,29,28,17,9,3)  # counts 
>  
> library(actuar)  # should have been installed before 
Attaching package: ‘actuar’ 
… 
> # using function ogive 
> Fn=ogive(x,y) 
> Fn 
Ogive for grouped data  
Call: ogive(x = x, y) 
    x =      0,   7500,  17500,  ...,  3e+05,  1e+06 
 F(x) =      0, 0.43612, 0.62115,  ..., 0.98678,      1 
> plot(Fn) 
> Fn(1000); Fn(7500); Fn(300000); Fn(302000); Fn(1050000) 
[1] 0.05814978 
[1] 0.4361233 
[1] 0.9867841 
[1] 0.9868219 
[1] 1 



 

19 
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Using library actuar (cont) - Now repeat the example using 
x=c(0,7500,17500,32500,67500,125000,300000,Inf) and analyze the main differences. 
 
Without using library actuar - challenge 1:  
> lb=x[-length(x)]; ub=x[-1] 
> a=cumsum(y)/sum(y); # ecdf at the boundaries 
> lF=c(0,a[-length(a)]); #Fn(c_j-1) 
> uF=a                   #Fn(c_j) 
> lb; ub; lF; uF 
[1]      0   7500  17500  32500  67500 125000 300000 
[1]    7500   17500   32500   67500  125000  300000 1000000 
[1] 0.0000000 0.4361233 0.6211454 0.7488987 0.8722467 0.9471366 
0.9867841 
[1] 0.4361233 0.6211454 0.7488987 0.8722467 0.9471366 0.9867841 
1.0000000 
>  
> #see formula (slide 14) 
> intercept=(ub*lF-lb*uF)/(ub-lb) 
> slope=(uF-lF)/(ub-lb) 
>  
> ogive_table=data.frame(lower_bound=lb,upper_bound=ub, 
+                        intercept=intercept,slope=slope) 
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> ogive_table 
  lower_bound upper_bound intercept        slope 
1           0        7500 0.0000000 5.814978e-05 
2        7500       17500 0.2973568 1.850220e-05 
3       17500       32500 0.4720999 8.516887e-06 
4       32500       67500 0.6343612 3.524229e-06 
5       67500      125000 0.7843325 1.302432e-06 
6      125000      300000 0.9188169 2.265576e-07 
7      300000     1000000 0.9811202 1.887980e-08 
>  
> Fn=c(0,uF) 
> # plotting the ogive 
> plot(x,Fn,type="l") 
> points(x,Fn,pch=16) 
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# The empirical density is given by the slope(column 4 of ogive table)  
# To plot a histogram we need to "simulate" the observations 
# As Only the number of observations in each interval matters, 
# we choose an arbitrarily value inside each interval and define array z  
z=c(rep(5000,99),rep(10000,42),rep(20000,29),rep(50000,28), 
    rep(70000,17),rep(150000,9),rep(400000,3)) 
 
hist(z,breaks=x)   # Be careful, you need a finite limit for x 



 

23 
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> hist(z,breaks=x,xlim=c(0,125000)) 
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The empirical survival function (from chapter 12 (14)) 
 
Let us consider a random sample ),,,( 21 nXXX   and let us define the estimator of the survival 

function as 

 *

1

1 1
( ) # ( )

n x
n i ii

N
S x X x I X x

n n n
     ,  0x , 

where    


n

i iix xXIxXN
1

)(# .  

It is straightforward to see that ))(;(~ xSnbN x .  

If we consider an observed sample the corresponding estimate is  
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n
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)( , 0x . 

Following Loss Models, from now on we will use the same notation for the estimator, *( )nS x ,  and 

the estimate, ( )nS x . Both will be denoted by ( )nS x . 
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 Problem 1 – How to estimate unconditional probabilities like )Pr( bXa  ? 
Noting that )()()Pr()Pr()Pr( bSaSbXaXbXa   a possible estimator is given by 

 ^ ,
Pr( ) ( ) ( )

a ba b
n n

NN N
a X b S a S b

n n


      .  

where  baN ,  is the number of observations that fall in the interval  ba, . 

As   ))()(;(~, bSaSnbN ba  , it is straightforward to obtain the expected value and the variance of the 

estimator.  

 Estimate:  ^ ,
Pr( ) ( ) ( )

a ba b
n n

nn n
a X b S a S b

n n


       

 Expected value of the estimator: 

   ^ , ( ) ( )
Pr( ) Pr( )
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E a X b E a X b

n n

                
  Unbiased 

 Variance of the estimator: 
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o Example 1 – Consider data set B and estimate Pr (𝑋 > 1000). Assuming that 20 is a large sample 
(which is not), define a 95% confidence interval for this probability. 

Estimator → 𝑃𝑟(𝑋 > 1000) =
( , ) 

Estimate  → 𝑃𝑟(𝑋 > 1000) =
( , )

= = 0.25 

Variance of the estimator → 𝑣𝑎𝑟 𝑃𝑟(𝑋 > 1000) = 𝑣𝑎𝑟
( , )

=
( ) ( ( ))

 

Estimator of the variance of the estimator: 

 𝑣𝑎𝑟 𝑃𝑟(𝑋 > 1000) = 𝑣𝑎𝑟
( , )

=

( , )
 

( , )

 

Estimate of the variance of the estimator: 

 𝑣𝑎𝑟 𝑃𝑟(𝑋 > 1000) =
( , )

 
( , )

=
. × .

= = 0.009375 

95% CI:  (0.0602, 0.4398)       0.25 ± 1.96 √0.009375. The width is quite large due to the sample 
size. 
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 Problem 2 – How to estimate a conditional probability like xxy q  
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The corresponding estimator is 
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 ˆ . This estimator does not have neither expected 

value nor variance since 0)0Pr( xN . 
 
The usual solution 
Assume that )()( xSxS n  (or equivalently that xx nN  ), given that 0xn  .  Now the estimator is 
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 ˆ  but the distribution of yN  (and then the distribution of )(ySn ) is conditioned by 

)()( xSxS n . The estimator is still unbiased and   
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How does it work? 
  
Using the condition )()( xSxS n  is equivalent to consider a sub-sample with all the observations 

greater than x  and to estimate the probability of the variable being greater than y .  

The sub-sample has xn  observations and we get the conditional estimator, 
x

y

x

yx
xxy n

N

n

Nn
q 


 1ˆ .  

Remember that, in this framework, ))(/)(,(~ xSySnbN xy . 

The variance of 
x

y

n

N
,  is estimated using the usual procedure applied to the sub-sample, i.e. 
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 Example 12.4 (14.5) – Using the full information of data set D1, empirically estimate 2q  and estimate 
the variance of this estimator. 

2x , 3y , 30n , 292 n , 273 n  

06897.0
29

2

29

2729
ˆ2 


q  

  002214.0
29

)2729(27
30/29)2(|ˆrâv

32 


Sq  

 
 Example 12.5 (14.6) – Using data set B, empirically estimate the probability that a payment will be at 

least 1000 when there is a deductible of 250. 

Let X  be the value of a claim amount. Since there is a deductible of 250 we want to estimate 
 250|1250Pr  XXp . Since there is a deductible, we only have 13 observations 

1250

250

(1250) 4
ˆ 0.3077

(250) 13
n

n

S n
p

S n
     

016386.0
13

94
)ˆr(âv

3



p  

Note that this variance is conditional to the existence of observations above the deductible.  
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Empirical estimation of probabilities 

Let us consider a discrete random variable and let us assume that we want to estimate )Pr()( jj xXxp  . 

Let jN  be the number of times the value jx  was observed in a sample of size n . As it is straightforward to 

see ))(;(~ jj xpnbN . 

The empirical estimator is nNxp jjn /)(  . Consequently 

  )()( jjn xpxpE  , the estimator is unbiased 

   
n

xpxp
xp jj
jn

)(1)(
)(var


 .  The estimator is consistent. 

The estimate of the variance is given by    
3

)
)(râv

n

nnn
xp jj
jn


  

Note that the usual approximation from the binomial to the normal distribution can be used to get a 
confidence interval for )( jxp . 

Note also that similar results can be obtained for a continuous random variable when considering the 
probability of a particular event. 
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 Example 12.7 (14.10) – For Data Set A determine the empirical estimate of )2(p  and estimate the 
variance of the estimator. 

94935n   017043.094935/1618)2( np   

    7
3

1076466.1
94935

)1618949351618
)2(râv 


np  

 
 Example 12.8 (14.11) – Use (10.3) and (10.4)  –  (12.3) and (12.4)  –  to construct approximate 95% 

confidence intervals for )2(p  using Data Set A 

First approximation using (10.4):  
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Confidence interval:   nppp nnn /)2(1)2(96.1)2(  , i.e. (0.01622; 0.01789) 

Second approximation using (10.3):  
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pnpnpn nnn , i.e. (0.01624; 0.01789) 
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Empirical survival distribution for grouped data 

Let Y  be the number of observations in the sample (size n) whose values are less than or equal to 1jc  and 

let Z  be the number of observations whose value are less than or equal jc  but greater than 1jc .  

 Then, for jj cxc 1 , we have 
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 . Using the new 

setup 
n

Y
cF jn  )( 1  and 

n

ZY
cF jn


)(  . 

 Now the marginal distributions of Y  and Z  are still binomial –  1~ ( ;1 ( ))jY b n S c   and 

1~ ( ; ( ) ( ))j jZ b n S c S c    – but the joint distribution is a multinomial (trinomial) distribution (Y  and Z  

are not independent). Then 

1( ) (1 ( ))jE Y n S c   ; 1 1var( ) (1 ( )) ( )j jY n S c S c   ; 

 1( ) ( ( ) ( ))j jE Z n S c S c  ; 1 1var( ) ( ( ) ( ))(1 ( ) ( ))j j j jZ n S c S c S c S c     ; 

1 1cov( , ) (1 ( ))( ( ) ( ))j j jY Z n S c S c S c      
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 The Expected value and variance  of the estimator are given by 
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 For the density estimate we get 
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( )nf x is a biased estimator for )(xf . The variance is 
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Example 12.6 (14.8) – For data set C, estimate )10000(S , )10000(f  and the variance of your 
estimators. 
Estimates 

51762.0
10000227

2500421000099
1)10000( 




nS  

51085022.1
10000227

42
)( 


xfn  

Estimates for the variance of the estimators 

82379.55
227

12672

227

99

227

128
227)r(âv Y  

22907.34
227

7770

227

185

227

42
227)r(âv Z  

31720.18
227

4158

227

99

227

42
227),v(ôc ZY  

 
2 2

2 2

12672 7770 4158
10000 2500 2 10000 2500

227 227 227ˆvar ( ) 0.000947127
227 10000nS x

      
 


 

 ˆvar ( ) 0.030775nS x   

A 95% confidence interval for )10000(S  is given by (0.45730 ; 0.57794) 
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KERNEL DENSITY MODELS 

 Although the empirical distribution converges to the distribution of the random variable, as n , a 
main point remains: for finite samples the empirical distribution is always discrete, even if the 
underlying variable is continuous. This problem is more annoying when the sample size is moderate. 

 Our aim is to smooth, using nonparametric methods (i.e. ignoring the functional form of the density), 
the empirical distribution to obtain an estimate of the continuous density (or distribution) function.  
 

 Definition 12.2 (14.2) – A kernel density estimator of a distribution function is  

 


k

j yj xKypxF
j1

)()()(ˆ  

And the estimator of the density function is 

 


k

j yj xkypxf
j1

)()()(ˆ . 

The function )(xk y  is called the kernel.  
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 Comments 

o The kernel is a non-negative real-valued integrable function satisfying 1)( 



dxxk y  to 

guarantee that the kernel method originates a density function. We will also have, 

 


x

yy duukxK )()( . 

□Question: How can we guarantee that ˆ ( )f x  is a density function? 

o In much cases we impose that ydxxkx y 



)( , that is the expected value is unchanged by the 

kernel.  
o )( jyp  is the probability assigned to the value jy , kj ,,2,1  , by the empirical distribution. : If 

all the sample values are unique we get ( ) 1 /jp y n  and then  


n

i x xKnxF
i1

)()/1()(ˆ  and 

 


n

i x xknxf
i1

)()/1()(ˆ  respectively. 
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 Definition 12.3 (14.3) (using a different notation) 
o Uniform kernel:  

       1 1

0

( ) 2 2 1 / (2 )

0
y

x y b

k x b I x y b b I y b x y b b y b x y b

x y b

 
 

            
  

 

o Triangular kernel:  
2

22

0

( ) /
( ) ( / 1)

( ) /

0

y

x y b

x y b b y b x yb y x
k x I y x b

y b x b y x y bb

x y b

 
                
  

 

o Gamma kernel:   )(
)()/(

)( ;0

/1

xI
y

ex
xk

yx

y 






 



  

Gamma density with mean y  and variance /2y . The lesser   the smoother the kernel. 

How to choose  ? One can use  2
4 2ˆ ˆ( ' / ' ) 1n     (Typo in the book)  

Remember that ˆ ( )k
k j jy p y   
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 Comments:  
o b is called the bandwidth . The higher is b the smoother will be the kernel density. 
o The first and second kernels are symmetric around y. In symmetric kernels the bandwidth is usually 

much more important than the choice of a particular kernel.  
o The third kernel is asymmetric and   plays a role similar to the bandwidth. Note that the gamma 

kernel can be used only with positive valued random variables. 
 

 How to get )(xK y ? 

o  


x

yy duukxK )()(  

o For example in the uniform case,  
0 0

1
( )

2 2
1 1

x

y y b

x y b x y b

x y b
K x du y b x y b y b x y b

b b
x y b x y b
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 In the remaining of the course we will follow Definition 12.2 (14.2). However, this is not the standard 
definition of a kernel density estimator. For a standard presentation, see Wasserman (2004). 

A kernel is any smooth function K  such that 0)( xK , 1)( 



dxxK , 0)( 




dxxKx  and 

 



dxxKxK )(22 .  

Given a kernel  K  and a positive number h , called the bandwidth, the kernel density estimator is 

defined to be   





 


n

i
i

n h

Xx
K

hn
xf

1

11
)(ˆ .  

Examples of kernels are: 

 The Gaussian kernel:   2/2/1 2

2)( ueuK    

 The Epanechnikov kernel:  5
5

1
54

3
)(

2












 uI

u
uK  

 The uniform kernel:  1
2

1
)(  uIuK  

 The triangular kernel:    11)(  uIuuK  
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All these kernels act symmetrically around each sample point. In this setup the choice of a particular 
kernel is generally much less important than the choice of the bandwidth. They are methods to 
approximate the “best” choice of the bandwidth (see Wasserman (2004)). 

 Example 12.13 (14.16) – Determine the kernel density estimate for Example 11.2 (13.2) using each of 
the three kernels. 

We will only discuss the uniform kernel with b=0.5 (results are presented for b=1.0 and b=0.1).  
 
Sample  1.0;1.3;1.5;1.5;2.1;2.1;2.1;2.8  

 

jy  1.0 1.3 1.5 2.1 2.8 

( )jp y  1/8 1/8 2/8 3/8 1/8 
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Bandwith b=0.5 then 1/ (2 ) 1b   
1.0  

 
→ 

0.5 1.5 
1.3 0.8 1.8 
1.5 1.0 2.0 
2.1 1.6 2.6 
2.8 2.3 3.3 

 
1/ 8 0.5 0.8

2 / 8 0.8 1.0

4 / 8 1.0 1.5

3 / 8 1.5 1.6

6 / 8 1.6 1.8ˆ( )
5 / 8 1.8 2.0

3 / 8 2.0 2.3

4 / 8 2.3 2.6

1/ 8 2.6 3.3

0 otherwise

x

x

x

x

x
f x

x

x

x

x
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Bandwith b=0.1 then 1/ (2 ) 5b   
1.0  

 
→ 

0.9 1.1 
1.3 1.2 1.4 
1.5 1.4 1.6 
2.1 2.0 2.2 
2.8 2.7 2.9 

 
5 / 8 0.9 1.1

5 / 8 1.2 1.4

10 / 8 1.4 1.6ˆ( )
15 / 8 2.0 2.2

5 / 8 2.7 2.9

0 otherwise

x

x

x
f x

x

x

 
  
  

   
  



   Discuss the problem related to the intervals limit  
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Bandwith b=1.0 then 1/ (2 ) 0.5b   
 

1.0  
 
→ 

0.0 2.0 
1.3 0.3 2.3 
1.5 0.5 2.5 
2.1 1.1 3.1 
2.8 1.8 3.8 

 
1/16 0 0.3

2 /16 0.3 0.5

4 /16 0.5 1.1

7 /16 1.1 1.8

8 /16 1.8 2.0ˆ( )
7 /16 2.0 2.3

6 /16 2.3 2.5

4 /16 2.5 3.1

1/16 3.1 3.8

0 otherwise

x

x

x

x

x
f x

x

x

x

x
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 Using R 
y=c(1.0,1.3,1.5,2.1,2.8); s=c(1,1,2,3,1); n=sum(s) 

p_y=s/n 

x=seq(0,4,by=0.025); fx=rep(NA,length(x)) 

 

# Uniform kernel 

b=0.5; LU=y-b; UU=y+b 

for(i in 1:length(x)) fx[i]=sum(p_y*dunif(x[i],LU,UU)) 

label.plot=paste("example 12.13 - Uniform kernel with b=",toString(b),sep="") 

plot(x,fx,type="l",main=label.plot) 

 

# Gamma kernel 

alpha=50 

for(i in 1:length(x)) fx[i]=sum(p_y*dgamma(x[i],shape=alpha,scale=y/alpha)) 

label.plot=paste("example 12.13 - Gamma kernel with alpha=",toString(alpha),sep="") 

plot(x,fx,type="l",main=label.plot) 
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 Example 1 (New) – Using the same data as before, estimate 𝑓(2) and (2)F  using a normal kernel with 
𝜎 = 0.3.  

Sample  1.0;1.3;1.5;1.5;2.1;2.1;2.1;2.8  

jy  1.0 1.3 1.5 2.1 2.8 

( )jp y  1/8 1/8 2/8 3/8 1/8 

 

𝑘 (𝑥) =
 √

 𝑒𝑥𝑝 −
 

  and then 𝑘 (2) =
.  √

 𝑒𝑥𝑝 −
 .

   

𝑓(2) = ∑ 𝑝 𝑦  𝑘 (2) =  
.  √

 𝑒𝑥𝑝 −
( )

 .
+ ⋯ +  

.  √
 𝑒𝑥𝑝 −

( . )

 .
  

=0.570943 
 

𝐾 (𝑥) = 𝐹(2|𝜇 = 𝑦 , 𝜎 = 0.3) where 𝐹 is the distribution function of a normal rv with mean 𝜇 and 

standard deviation 0.3. 

𝐹(2) = ∑ 𝑝 𝑦  𝐾 (2) =  𝐹(2|𝜇 = 1.0, 𝜎 = 0.3) + ⋯ + 𝐹(2|𝜇 = 1.0, 𝜎 = 0.3)  
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R code 
> y=c(1,1.3,1.5,2.1,2.8); p.y=c(1/8,1/8,2/8,3/8,1/8) 
>  
> k_y=dnorm(2,y,0.3) 
> f_=sum(p.y*k_y) 
> f_ 
[1] 0.5709434 
> K_y=pnorm(2,y,0.3) 
> F_=sum(p.y*K_y) 
> F_ 
[1] 0.6257912 
> 
 
Using R, we can do a few plots 
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Estimated density function 
Normal kernel with 𝜎 = 0.3 

Comparing estimated densities 
𝜎 = 0.3 (black) versus 𝜎 = 0.4 (red) 

 
 
 
 

  



 

49 

 

 

  
Estimated distribution function 

Normal kernel with 𝜎 = 0.3 

Comparing estimated distribution functions 

𝜎 = 0.3 (black) versus 𝜎 = 0.4 (red) 
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Comparing the kernel with the ecdf 
 
 
 

 
  


